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Multidimensional phase space integrals must be calculated in order to obtain predictions for total or differential 
cross sections, or to simulate unweighted events of multiparticle reactions. The corresponding matrix elements, 
already in the leading order, receive contributions typically from dozens of thousands of the Feynman diagrams, 
many of which often involve strong peaks due to denominators of some Feynman propagators approaching 
their minima. As the number of peaks exceeds by far the number of integration variables, such integrals 
can practically be performed within the multichannel Monte Carlo approach, with different phase space 
parameterizations, each designed to smooth possibly a few peaks at a time. This obviously requires a lot 
different phase space parameterizations which, if possible, should be generated and combined in a single 
multichannel Monte Carlo procedure in a fully automatic way. A few different approaches to the calculation 
of the multidimensional phase space integrals have been incorporated in version 4.5 of the multipurpose Monte 
Carlo program carlomat. The present work illustrates how carlomat_4.5 can facilitate the challenging task 
of calculating the multidimensional phase space integrals.

1. Introduction

Various aspects of the theory of fundamental interactions, such as 
the non-Abelian nature of gauge symmetry group or the mechanism of 
the symmetry breaking can be studied in high energy colliders through 
observations of processes of a few heavy particle production at a time 
which, if combined with their almost immediate decays, lead to multi-

particle final states. In order to fully investigate the nature and inter-

actions of the heavy particles produced, the corresponding multiparti-

cle reactions must be measured, including their distributions and spin 
correlations. Such measurements can be best performed in a clean ex-

perimental environment of the planned electron-positron colliders, as 
the Future Circular Collider (FCC–ee) [1] and Compact Linear Collider 
(CLIC) [2] at CERN, the International Linear Collider (ILC) [3] in Japan, 
or the Circular Electron–Positron Collider (CEPC) [4] in China.

Multiparticle reactions must also be measured and compared with 
model predictions at low energy 𝑒+𝑒− colliders in order to deter-

mine more precisely hadronic contributions to the vacuum polar-

ization through dispersion relations from the ratio 𝑅 = 𝜎(𝑒+𝑒− →
hadrons)∕𝜎(𝑒+𝑒− → 𝜇+𝜇−) at the centre of mass energies below the 
𝐽∕𝜓 production threshold. The hadronic contributions to the vacuum 
polarization have an impact on precision of theoretical predictions for 
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the muon 𝑔 − 2 anomaly and play an important role in the evolution of 
the fine structure constant 𝛼(𝑄2) from the Thomson limit to high en-

ergy scales. Precision knowledge of 𝛼(𝑚2
𝑍
) would be vital for the Giga 

Z option of any future 𝑒+𝑒− collider.

Derivation of theoretical predictions for cross sections or asymme-

tries of any multiparticle reaction requires integration over a multi-

dimensional phase space of a squared modulus of the corresponding 
matrix element, which often receives contributions from several dozens 
of thousands or even several hundreds of thousands of the Feynman di-

agrams. Such multidimensional integrals can be in practice calculated 
only with the Monte Carlo (MC) method. Whenever denominators of the 
Feynman propagators approach its minimum, the corresponding ampli-

tudes may become strongly peaked. In order to obtain reliable results of 
the integration, those peaks must be smoothed by appropriate changes 
of the integration variables. However, the number of peaks in the full 
amplitude of the reaction usually substantially exceeds the number of 
variables in the corresponding differential phase space element param-

eterization. Therefore, the multichannel MC approach must be used, 
where the name channel refers to a single phase space parameterization 
which can smooth possibly a few peaks at a time. All different param-

eterizations must be then combined into a single parameterization that 
is used in the MC integration. As the number of channels is typically 
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very large, the whole process of generating appropriate multichannel 
differential phase space parameterization must be fully automized.

An obvious way to follow in order to map out all the peaks is to gen-

erate one subroutine containing the phase space parameterization for 
each individual Feynman diagram, as it was originally done in car-
lomat_1.0 [5]. However, for multiparticle reactions, this approach 
leads to a large number of subroutines containing different parameter-

izations and the resulting multichannel phase space routine is huge in-

deed and usually difficult to compile. Needless to say that the execution 
time of the MC integration would also become rather long. A modifi-

cation of this approach was introduced in carlomat_2.0 [6], where 
several phase space parameterizations corresponding to the Feynman 
diagrams of the same topology were combined into a single subroutine 
which resulted in a substantially shorter multichannel MC integration 
routine. The efficiency of that approach was further improved in car-
lomat_4.0 [7] by automatic inclusion of parameterizations which map 
away the t-channel poles and peaks due to soft and collinear photon 
or gluon emission. However, for some multiparticle reactions as, e.g., 
2→ 8 particle scattering which are relevant for the associated produc-

tion of the top quark pair and the Higgs or vector boson, the resulting 
multichannel MC kinematics routine may be still difficult to compile 
and would need quite a long execution time. To overcome these diffi-

culties a different approach was proposed in PSGen [8], a program for 
generation of phase space parameterizations for the multichannel MC in-

tegration, where the phase space parameterizations of a given reaction 
are generated automatically according to predefined patterns which are 
supposed to smooth only the most relevant peaks of the matrix element. 
This reduces substantially the size of the multichannel MC kinematics 
routine which can be very fast generated and compiled and executed in 
a much shorter time. However, it is obvious that, as not all the peaks 
present in the matrix element are taken into account by PSGen, some 
loss of the MC integration convergence should be expected.

In order to facilitate the challenging task of calculating the multidi-

mensional phase space integrals, carlomat_4.5, a new version of the 
multipurpose Monte Carlo program carlomat has been written. It al-

lows to calculate the cross section either with the kinematics routine 
generated by carlomat, or with the kinematics routine generated by 
PSGen_1.1, the current version of PSGen, dependent on user’s choice. 
The kinematics chosen can be automatically combined with the lead-

ing order (LO) matrix element generated by carlomat or with the user 
provided matrix element, either in the LO or in higher orders. The MC in-

tegration can be performed either with carlos, a plain MC integration 
routine of carlomat [5], or VEGAS [11] as the latter has been imple-

mented in carlomat_4.5. VEGAS handles peaks of the integrand with 
an importance sampling technique which is based on appropriate adap-

tation of the integration grid in subsequent iterations of the integral. As 
the original version of VEGAS [11] is limited to calculation of integrals 
up to 10 dimensions, its Fortran source has been modified by the author 
of the present work so that it can also be used to calculate integrals of 
higher dimension. However, as it will be discussed later on in Section 3, 
its use may then encounter some problems.

In the present work, a few issues concerning efficiency and conver-

gence of the MC integration will be addressed by comparing results for 
the cross sections of a few physically interesting multiparticle reactions 
that could be measured at any future high energy 𝑒+𝑒− collider. The 
cross sections will be calculated with different phase space parameteri-

zations generated automatically with the above described algorithms. It 
will also be checked to which extent different options of performing the 
actual MC integration, such as the initial scan of the generated kinemat-

ics channels or an adaptation of integration weights after each iteration 
of the integral, or the use of adaptive MC integration routine VEGAS 
influence the integration efficiency.

The article is organized as follows. Some calculational details and 
useful hints concerning usage of carlomat_4.5 are given in Section 2. 
Section 3 contains a sample of cross sections which should illustrate 

possible problems related to the calculation of multidimensional MC 
integrals. The conclusions are formulated in Section 4.

2. Calculational details and program usage

In this section, some details on generation of the code, preparation 
for running the MC program and selection of options for numerical cal-

culation of the cross sections presented in Section 3 are given.

The user defines the reaction to be considered and chooses the way in 
which the phase space parameterizations should be generated by an ap-

propriate choice of flag ipsgen in carlomat.f, the main program of 
the code generation package of carlomat_4.5 [9], the current version 
of carlomat. If integer variable ipsgen is set to any value different 
from 1 then the kinematics routine will be automatically generated by 
carlomat, else, if ipsgen=1, then the kinematics routine should be 
generated by PSGen, in the way described below. There are a few other 
flags in carlomat.f that should be set to desired values and then the 
program should be run with the command 
make code. 
Note that the Fortran compiler to be used is chosen in a correspond-

ing makefile. If ipsgen=1 then the user should switch to PS-
Gen/code_generation and run the phase generation program there, 
again with the command 
make code. 
Prior to it, some flags described in the main program PSGen can 
be selected and the phase generation patterns can be edited in file 
genps.dat in order to map peaks of the considered reaction in the 
best way. How those patterns are to be defined is described in detail 
in [8]. Note that any predefined pattern can be commented out by set-

ting the first integer entry of the corresponding line to 0. If the width 
of a massive particle is set to a character variable zero, then the corre-

sponding squared four momentum transfer in the Feynman propagator 
will be generated according to a flat probability distribution.

The MC integration is performed with the automatically generated 
probability density function 𝑓 (𝑥) which is defined in terms of probabil-

ity density functions 𝑓𝑖(𝑥), 𝑖 = 1, ..., 𝑛kin, also automatically generated, 
in the following way

𝑓 (𝑥) =
𝑛kin∑

𝑖=1 
𝑎𝑖𝑓𝑖(𝑥), (1)

where 𝑥 = (𝑥1, ..., 𝑥𝑛d
), 0 < 𝑥𝑖 < 1, are random numbers and weights 

𝑎𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛kin, satisfy the condition 
𝑛kin∑
𝑖=1 

𝑎𝑖 = 1. Densities 𝑓 (𝑥) and 

𝑓𝑖(𝑥) of Eq. (1) must fulfil the following normalization conditions

1 

∫
0 

d𝑛d𝑓 (𝑥) =

1 

∫
0 

d𝑛d𝑓𝑖(𝑥) = vol(Lips), (2)

where vol(Lips) is the total volume of the Lorentz invariant phase space 
of the considered reaction. Parameterizations of differential phase space 
elements 𝑓𝑖(𝑥) of Eq. (1) are generated either with carlomat_4.5 [9] 
or with PSGen_1.1 [10], the current version of PSGen. The actual 
probability density function 𝑓𝑖(𝑥) according to which the final state par-

ticle four momenta are generated, which are needed to calculate the 
corresponding matrix element or to be stored as MC events, is chosen 
from the set {𝑓𝑗 (𝑥), 𝑗 = 1, ..., 𝑛kin} if uniformly distributed random num-

ber 𝜉 ∈ [0,1] falls into the interval 𝑎0 + ...+ 𝑎𝑖−1 ≤ 𝜉 ≤ 𝑎0 + ...+ 𝑎𝑖, with 
𝑎0 = 0. In the present work, the corresponding LO standard model (SM) 
matrix element is generated by carlomat_4.5.

Once the code for calculation of the matrix element and the kine-

matics routines have been generated, the user should choose the cen-

tre of mass energies and set the desired options, by appropriately 
editing the main MC program carlocom_mpi.f in directory car-
lomat_4.5/mc_computation. Then the program can be run with 
the command 
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make -f mpi mc. 
The output will be written to files tot_i_..., where

i=0,1,2,...,n_proc labels computational processes within the Mes-

sage Passing Interface (MPI) whose number n_proc should be set in the 
first line of the makefile mpi.

A number of options are available in the main program car-
locom_mpi.f which allow to better control the MC integration. One 
of them is governed by flag iscan. If iscan=1 then the MC integral 
is scanned. This means that prior to the actual calculation with a large 
number of calls to the integrand and, e.g. 10 iterations, it is calculated 
in one iteration with a relatively small, say 1000, number of calls, each 
time with a single phase space parameterization 𝑓𝑖(𝑥). The latter is se-

lected by setting 𝑎𝑖 = 1 and all other weights, 𝑗 ≠ 𝑖, 𝑎𝑗 = 0. Denote the 
rough estimate of the cross section obtained in this way by 𝜎𝑖. Then 
weights 𝑎𝑖 of Eq. (1) for the first iteration of the MC integral are deter-

mined according to the following formula

𝑎𝑖 =
𝜎𝑖

𝑛kin∑
𝑖=1 

𝜎𝑖

, 𝑖 = 1, ..., 𝑛kin. (3)

On the other hand, if iscan=0 then the first iteration of the MC in-

tegral is calculated with equal weights, 𝑎𝑖 = 1∕𝑛kin. Another flag in 
carlocom_mpi.f is iwadapt. If iwadapt=1 then the weights 𝑎𝑖 are 
calculated anew after each iteration according to Eq. (3), with 𝜎𝑖 be-

ing a collection of all contributions to the total cross section obtained 
if probability density function 𝑓𝑖(𝑥) has been selected for calculation of 
the final state particle momenta. Else, if iwadapt=0 then all the itera-

tions of the MC integral are calculated with the weights 𝑎𝑖 fixed at the 
very beginning, i.e. before the first iteration of the MC integral.

3. Some illustrative results

In this section, the efficiency of different approaches to calculation 
of multidimensional integrals with the MC method is examined. As illus-

trative examples, the LO SM cross sections of a few physically interesting 
multiparticle reactions, which could potentially be measured at any 
future high energy 𝑒+𝑒− collider, are considered. In particular, cross 
sections of the following reactions

𝑒+𝑒− → 𝜇+𝜈𝜇𝜇
−�̄�𝜇, 𝑛d = 8, 19 diagrams, (4)

𝑒+𝑒− → 𝑏𝜇+𝜈𝜇�̄�𝜇
−�̄�𝜇, 𝑛d = 14, 452 diagrams, (5)

𝑒+𝑒− → 𝑏�̄�𝑏𝜇+𝜈𝜇�̄�𝜇
−�̄�𝜇, 𝑛d = 20, 46890 diagrams, (6)

where dimension 𝑛d of the corresponding phase space integral and the 
number of the LO SM Feynman diagrams are indicated on the right hand 
side of each reaction, are calculated. The final states of reactions (4), (5) 
and (6) represent relatively clean detection channels of, respectively, 
𝑊 +𝑊 −, top quark pair production and associated production of the 
Higgs boson and top quark pair. To enable their identification the fol-

lowing cuts:

5◦ < 𝜃(l, beam), 𝜃(q, beam) < 175◦, 𝜃(l, l’), 𝜃(q, q’), 𝜃(q, l) > 10◦,
𝐸l, 𝐸q > 15 GeV, 𝐸𝑇missing > 15 GeV, 

(7)

where l, l′ stand for either 𝜇− or 𝜇+ and q, q′ stand for either 𝑏 or �̄�, 
are imposed.

In order to find out the optimal probability density function of 
Eq. (1), the proper choice of flags and the adequate MC integration 
routine, the results for the LO cross sections of reactions (4) and (5) 
at 

√
𝑠 = 360 GeV,500 GeV, 800 GeV and 1 TeV are collected in Tables 1

and 2, respectively. In both tables, all entries in columns 3–6 and rows 
with the same value of 

√
𝑠 in column 1 show the cross sections calcu-

lated with different phase space parameterizations and various choices 
of options for the MC integration, as described in the following. Val-

ues of ivegas/ipsgen listed column 2 correspond to choices of the 

flags described in Section 2. In particular, if the first integer in column 
2, i.e. ivegas, is equal to 0(1) then the integration is performed with 
a plane MC integration routine carlos (an adaptive MC integration 
routine VEGAS). The other integer in column 2 indicates whether the 
multichannel probability density function 𝑓 (𝑥) of Eq. (1) has been gen-

erated by carlomat_4.5 (ipsgen=0) or by PSGen_1.1 (ipsgen=1). 
The two upper rows of columns 3–6 specify choices of flags iscan and 
iwadapt, described in Section 2, which have been used in the MC in-

tegration of cross sections listed below.

A brief inspection of Table 1 shows that the initial scan of the gener-

ated kinematic channels reduces the standard deviation of the MC inte-

gral by roughly a factor 3. The same observations holds also for the use of 
adaptive MC integration routine VEGAS. If, in addition, the weight adap-

tation is turned on, then the MC error is further reduced, but to much 
less extent. Note, however, that the combination ivegas/ipsgen=1/0 
(ivegas/ipsgen=1/1) with iscan=0 and iwadapt=0 gives a small 
error with an underestimation (overestimation) of the integral, which is 
not compatible with the other results. This is most probably because the 
VEGAS grid adaptation algorithm is accidentally caught in some kine-

matics channels, with practically no possibility of choosing the other 
channels in consecutive iterations.

Accumulated results for the LO SM cross section of reaction (4) at √
𝑠 = 500 GeV as functions of the number of iterations are shown in 

Fig. 1. The results plotted in the left panel have been integrated with 
the probability density function 𝑓 (𝑥) of Eq. (1) generated by car-

lomat_4.5 and those plotted in the right panel with 𝑓 (𝑥) generated 
by PSGen_1.1. In both panels, the left histogram shows the results 
integrated with carlos while the right histogram depicts the results ob-

tained with VEGAS and iscan=1 and iwadapt=1 have been assumed. 
By comparing the left and right histograms in both panels of Fig. 1, we 
see that the VEGAS algorithm reduces the standard deviation in consec-

utive iterations much better than that of carlos. One should also note 
that the result of the first iteration in the right panel departs substan-

tially from the results of further iterations. This is because of the fact 
that the 𝑓 (𝑥) generated by PSGen_1.1 does not contain mappings of 
all the peaks of the integrand.

Looking at Table 2, one sees that the initial scan of the generated 
kinematic channels reduces the standard deviation of the MC integral 
even more substantially than in Table 1. However, the error reduction 
due to the use of adaptive integration routine VEGAS is not as illu-

minating as in Table 1. In contrary, the results for 
√
𝑠 = 800 GeV and √

𝑠 = 1 TeV obtained with the use of VEGAS do not seem to be reli-

able. It looks as if the VEGAS grid adaptation algorithm does not work 
as efficiently for 𝑛d = 14, as it does for 𝑛d ≤ 10, which it was originally 
designed for. This conjecture seems to be confirmed for reaction (6), the 
cross sections of which integrated over the 20-dimensional phase space 
with VEGAS are not reliable at all. However, it is also possible that the 
VEGAS grid adaptation algorithm does not conform well with large num-

ber of kinematics channels for reactions (5) and (6) which are selected 
randomly during the computation of integral. This has been confirmed 
by counting calls to different kinematics channels in each iteration. After 
a few iterations VEGAS keeps calling the same kinematics all the time 
and hence its weight approaches 1. The plain MC integration routine 
carlos seem to cope better with these problems.

Accumulated results for the LO SM cross section of reaction (5) at √
𝑠 = 500 GeV as functions of the number of iterations are shown in 

Fig. 2. The results plotted in the left panel have been integrated with 
the probability density function 𝑓 (𝑥) generated by carlomat_4.5 and 
those plotted in the right panel with 𝑓 (𝑥) generated by PSGen_1.1, 
in both cases with iscan=1 and iwadapt=1. Again, in both panels, 
the left histogram shows the results integrated with carlos while the 
right one depicts the results obtained with VEGAS. The advantage of the 
adaptive algorithm of VEGAS over the plain MC sampling of carlos 
in reducing the standard deviation is not any more as pronounced as in 
Fig. 1, as expected.
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Table 1
LO cross sections in fb of reaction (4) calculated with different choices of options 
for the MC integration, as described in the main text. Uncertainties of the last 
digits are given in parentheses.

√
𝑠 ivegas/ iscan=0 iscan=1 iscan=0 iscan=1 

(GeV) ipsgen iwadapt=0 iwadapt=0 iwadapt=1 iwadapt=1 
360 0/0 111.06(45) 111.48(17) 111.16(16) 111.74(15) 
360 1/0 106.10(18) 111.69(5) 111.61(4) 111.62(4) 
360 0/1 111.58(42) 111.71(16) 111.65(16) 111.53(15) 
360 1/1 119.66(18) 112.57(5) 111.88(4) 111.81(4)

500 0/0 70.51(44) 70.85(16) 70.42(15) 70.55(15) 
500 1/0 66.87(13) 70.62(4) 70.48(3) 70.50(3) 
500 0/1 70.18(40) 70.66(15) 70.67(15) 70.36(14) 
500 1/1 74.79(13) 70.98(4) 70.59(3) 70.58(3)

800 0/0 31.95(31) 32.30(11) 32.25(11) 32.11(11) 
800 1/0 30.38(6) 32.23(2) 32.19(2) 32.19(2) 
800 0/1 31.93(28) 32.20(11) 32.23(11) 32.08(10) 
800 1/1 33.24(6) 32.22(2) 32.25(2) 32.26(2)

1000 0/0 21.09(24) 20.90(8) 20.93(8) 20.89(8) 
1000 1/0 19.66(4) 20.88(1) 20.89(1) 20.90(1) 
1000 0/1 20.75(21) 20.87(8) 20.95(8) 20.93(8) 
1000 1/1 21.59(4) 20.82(1) 20.92(1) 20.92(1) 

Fig. 1. Accumulated results for the LO SM cross section in fb of reaction (4) at 
√
𝑠 = 500 GeV as functions of the number of iterations. The results plotted in the left 

panel have been integrated with 𝑓 (𝑥) of carlomat_4.5 and those plotted in the right panel with 𝑓 (𝑥) of PSGen_1.1. In both panels, the left histogram has been 
integrated with carlos and the right histogram with VEGAS, with iscan=1 and iwadapt=1.

Table 2
LO cross sections in fb of (5) calculated with different choices of options for the 
MC integration, as described in the main text. Uncertainties of the last digits are 
given in parentheses.

√
𝑠 ivegas/ iscan=0 iscan=1 iscan=0 iscan=1 

(GeV) ipsgen iwadapt=0 iwadapt=0 iwadapt=1 iwadapt=1 
360 0/0 4.3212(222) 4.3154(25) 4.3224(31) 4.3148(23) 
360 1/0 4.2001(215) 4.2509(33) 4.2989(22) 4.2991(29) 
360 0/1 4.3281(123) 4.3216(25) 4.3124(17) 4.3157(19) 
360 1/1 4.3497(110) 4.4967(18) 4.3337(17) 4.3234(13)

500 0/0 5.7721(334) 5.7444(45) 5.7584(52) 5.7416(45) 
500 1/0 5.3242(326) 6.2811(23) 5.7385(70) 5.7384(35) 
500 0/1 5.7628(173) 5.7625(28) 5.7606(30) 5.7618(26) 
500 1/1 6.0091(155) 5.8128(23) 5.7627(25) 5.7644(22)

800 0/0 2.8451(214) 2.8395(56) 2.8585(93) 2.8420(68) 
800 1/0 2.4527(352) 3.2007(20) 2.8013(44) 2.7906(58) 
800 0/1 2.8583(91) 2.8662(20) 2.8647(22) 2.8688(20) 
800 1/1 3.0329(83) 3.0706(12) 2.8634(17) 2.8625(15)

1000 0/0 1.9306(202) 1.9433(68) 1.9363(77) 1.9230(69) 
1000 1/0 2.3477(276) 2.0881(9) 0.4127(430) 1.9841(50) 
1000 0/1 1.9675(65) 1.9644(18) 1.9634(18) 1.9621(17) 
1000 1/1 2.0288(60) 2.0864(6) 1.8903(42) 1.8667(20) 



Computer Physics Communications 315 (2025) 109697

5

K. Kołodziej 

Fig. 2. Accumulated results for the LO SM cross section in fb of reaction (5) at 
√
𝑠 = 500 GeV as functions of the number of iterations. The results plotted in the 

left panel have been integrated with the phase space generated by carlomat_4.5 and those plotted in the right panel with PSGen_1.1. In both panels, the left 
histogram has been integrated with carlos and the right histogram with VEGAS, with iscan=1 and iwadapt=1.

Fig. 3. Accumulated results for the LO SM cross section in fb of reaction (6) at 
√
𝑠 = 500 GeV and 

√
𝑠 = 800 GeV as functions of the number of iterations. The 

left (right) histograms in both panels have been integrated with carlos, using iscan=1 and iwadapt=1, and the phase space generated by carlomat_4.5 
(PSGen_1.1).

Therefore, in Fig. 3, only the results obtained with carlos, using 
iscan=1 and iwadapt=1, are shown. The accumulated results for the 
cross section of reaction (6) as functions of the number of iterations 
at 

√
𝑠 = 500 GeV and 

√
𝑠 = 800 GeV are plotted in the left and right 

panel, respectively. In both panels, the left (right) histograms show re-

sults integrated with the probability density function 𝑓 (𝑥) generated 
by carlomat_4.5 (PSGen_1.1). The advantage of the 𝑓 (𝑥) of car-
lomat_4.5, which maps out all peaks of the integrand, is clearly vis-

ible. The results of consecutive iterations of the MC integral are much 
more stable and the standard deviation is much smaller than in case 
of the integration with the 𝑓 (𝑥) of PSGen_1.1 which covers only the 
most dominant peaks of the associated top quark pair and Higgs boson 
production.

4. Conclusions

It has been shown that calculation of multidimensional phase space 
integrals, which are necessary in order to obtain predictions for total or 
differential cross sections, or to simulate unweighted events of differ-

ent physically interesting reactions, is a challenging task. It can be in 
practice solved only with the Monte Carlo method. As the correspond-

ing matrix elements involve many peaks, the variance of the MC integral 
can be reduced only if those peaks are mapped out which is achieved 
by the use of the multichannel MC approach, with different phase space 
parameterizations generated and combined in the single probability dis-

tribution in a fully automatic way. A few different approaches to this 
task have been applied in the present work. It has been shown that there 
is no single golden recipe to obtain reliable results for the MC integrals 
of interest. Which particular approach should be used depends mostly 
on the dimension of the phase space integral, but also on the centre of 
mass energy of the considered reaction.

The Fortran code with which the results shown in the present work 
were obtained is public. It can be downloaded from the web pages whose 
addresses are given in [9], [10] and freely used.
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